Warsaw University of Technology

Energy-efficient wireless sensor networks: models, algorithms, applications

Ewa Niewiadomska-Szynkiewicz

Institute of Control and Computation Engineering Electronics and Information Technology Department

Wireless ad hoc network

Ad hoc network: A network with a decentralized structure formed by heterogeneous devices that autonomously organize themselves into a network No external network infrastructure is required to transmit data, devices within radio range communicate with each other

Wireless Sensor Network (WSN): A network of spatially dispersed numerous static, quasi-static, or mobile smart sensing devices that monitor the environment, record, and transmit data

WSN often relay on spontaneous network formation

Warsaw University of Technology

Self-organization

The process by which a complex system's shape, spatial structure, or behavior emerges due to the interactions between its components

1971: ALOHAnet, the first public demonstration of a wireless packet data network connecting 7 computers located on 4 Island (University of Hawaii project)

1997: IEEE 802.11 (WiFi) **1999**: IEEE 802.15.1 (Bluethooth) **2004**: IEEE 802.15,4 and ZigBee

Bult K. et al., Low Power Systems for Wireless Microsensors, ISLPED, 1996

Tunell S.Viglio monitoring

Warsaw University of Technology

Energy-efficient wireless sensor networks: models, algorithms, applications

Torre Aquila (Trento) monitoring

Problems:

Warsaw University of Technology

WSN modeling

WSN – a network built with N static or mobile sensing devices D_i communicating wirelessly

WSN is an undirected graph WSN = (V, E)

- set of vertices: sensing devices, $V=S_D$
- set of edges: links available at time t, $E=S_L$

 $WSN = (S_D, S_L)$

where

 $S_D = \{D_i, i = 1, \dots, N\}$

 $S_{L} = \{ (D_{i}, D_{j}) : D_{i} \in S_{D}, D_{j} \in S_{D}, \|\mathbf{c}_{i} - \mathbf{c}_{j}\| \le r_{t_{i}}, i, j = 1, ..., N, i \neq j \}$

 $\mathbf{c}_i = [x_i, y_i, z_i] - D_i$ location in the workspace (transmitting antenna coordinates), $r_{t_i} - D_i$ radio transceiver range

Workspace: a set of possible sensors locations $W = \{ (\mathbf{o}_i : \mathbf{o}_i \in \mathbb{R}^3, \mathbf{o}_i \in \mathbb{R}^3, \mathbf{o}_i \}$ Set of obstacles in the workspace (S_O^s, S_O^m) : S_O^s - a set of static obstacles, S_O^m - a set of mobile obstacles

Warsaw University of Technology

$$(L), S_D \neq \emptyset, S_L \neq \emptyset$$

$$= [x_j, y_j, z_j], j = 1, ..., J$$

WSN node model - position

The network node D_i is a rigid solid of arbitrary shape

- D_i is inscribed in a polyhedron Env_i (envelope) w
- Reference point \mathbf{c}_i the location of D_i transmitting antenna

Each obstacle is inscribed in a polyhedron:

 Env_l – an envelope of l static obstacle, Env_m – an envelope of m mobile obstacle

Warsaw University of Technology

with vertices
$$\mathbf{p}_i^j \in \mathbb{R}^3$$
, $j = 1, ..., |P_i|$

WSN node model – energy and memory

Limited computing power, memory, and energy resources

of Technology

WSN model – the wireless channel

The average signal degradation (path loss) with a distance of d

$$Pl[dB] = P^t[dBW] - P^r[dBW]$$

Analitycal-empirical models of the path loss

The long-distance path model

$$Pl(d)[dB] = Pl(d_0)[dB] + 10n \log\left(\frac{d}{d_0}\right)$$

The long-normal shadowing model

$$Pl(d)[dB] = Pl(d_0)[dB] + 10n \log\left(\frac{d}{d_0}\right) + X_{\sigma}$$

WSN node model - motion

- Network node D_i : the set of points $\{\mathbf{c}_i, \mathbf{p}_i^1, \dots, \mathbf{p}_i^{P_i}\}$
- Each obstacle O_j : the set of points $\{\mathbf{p}_j^1, \dots, \mathbf{p}_j^{P_j}\}$
- D_i can move avoiding obstacles, $v_i \in [v_{min}, v_{max}], \omega_i \in [\omega_{min}, \omega_{max}]$

$$\bar{v}_i = \frac{\mathbf{c}_i(t_{k+1}) - \mathbf{c}_i(t_k)}{\Delta t}, \qquad k \ge 1$$

 $Vol(Env_i) \cap Vol(Env_k^m) \cap Vol(Env_l^s) = \emptyset$

- Mapping the shape of objects with any degree of accuracy
- Ease of motion modeling and collision avoidance
- Ability to pass through narrow passages

Warsaw University of Technology

Self-organised WSN - motion trajectory calculation

Warsaw University of Technology

The inspiration - classical mechanics and liquid crystals

The interactions between a pair of molecules are commonly modeled using the Lennard-Jones potential function

The function with characteristics similar to Lennard-Jones

$$U_i(d_i) = \left(\frac{\hat{d}_i}{d_i} - 1\right)^2$$
$$\mathbf{F}_i(d_i) = -\nabla U_i(d_i)$$

 d_i - measured distance d_i - reference distance U_i - potential

Self-organised WSN – motion trajectory calculation

1. Base station: initial conditions, network clustering, coordination displacement calculation solving the optimization problem 2. WSN node:

 ϵ_i - weighting factor

Temporary communication network

Warsaw University of Technology

Energy-efficient wireless sensor networks: models, algorithms, applications

$$ik\left(\frac{\hat{d}_{ik}}{d_{ik}}-1\right)^{2}+\epsilon_{ig}\left(\frac{\hat{d}_{ig}}{d_{ig}}-1\right)^{2}$$
obile obstacle
goal

Workspace covering

unknow obstacles

known obstacles

WSN node model – summary

Warsaw University of Technology

memory

Problem 1: network nodes localization

A self-organized ad hoc network can consist of sensors with initially unknown positions in the workspace

Localization task: sensing devices positions estimation

Localization problem: distance-based method

Warsaw University of Technology

- Let us consider the network
- **K** total number of anchor nodes
- *M* total number of non-anchor nodes

The goal

find the location of non-anchor nodes

Range-based vs range-free localisation

Connectivity-based (range-free) localization algorithms

- APS Ad Hoc Positioning System [D. Niculescu and B. Nath]
- SDP Convex position estimation in wireless sensor networks [L. Doherty, K. Pister, L. El Ghaoui]
- MDS Localization from Connectivity in Sensor Networks [Y.Shang, W. Ruml, Y. Zhang]

Distance-based (range-based) localization algorithms

- Semidefinite programming for ad hoc wireless sensor network localization [P. Biswas and Y. Ye]
- Simulated Annealing-based localization in Wireless Sensor Networks [A. Kannan, G. Mao, B. Vucetic]
- Two-phase Stochastic Optimization to Sensor Network Localization [M. Marks, E. Niewiadomska-Szynkiewicz]

Inter-node distances estimation

- RSSI (received signal strength indicator)
- Wireless channel model

Two-stage method with correction

Phase I

The auxiliary solution (initial localization) is produced

Phase II

The solution of the first phase is modified by applying simulated annealing

$$\min_{z_i, i=1, \dots, M} \begin{cases} J = \sum_{k=1}^{K} \\ K = 1 \end{cases}$$

TSA: Trilateration & Simulated Annealing

TGA: Trilateration & Genetic Algorithm

Warsaw University of Technology

Energy-efficient wireless sensor networks: models, algorithms, applications

Trilateration

Calculate $\mathbf{c} = [x, y, z]$ for $k=1, ..., K, K \ge 3$ $d_k = \left\| \mathbf{c} - \mathbf{c}_k^r \right\|_2$

Nonlinear optimization

Solve the optimization problem with estimated

distances between all neighbors from sets SN_k and SN_i

●_C

WSN localization – simulation results

Warsaw University of Technology

RESEARCH UNIVERSITY EXCELLENCE INITIATIVE

WSN localization: testbed networks

WSN inside the building

8 sensors + 1 base station

Methods: APS (DV-hop), APS (DV-distance)

WSN in the open space

49 sensors (7 anchor nodes)

Method: TSA

Method	LE: simulation	LE: testbed
DV-hop	55.34 %	62.72 %
DV-distance	16.67 %	49.87 %

Method	LE: simulation	LE: testbed
TSA	0.18 %	0,94 %

Problem2: Energy-aware communication

the radio module

Radio mode	Signal strength	CC2420	CC2500
	[dmB]	[2400MHz]	[2400MHz]
SLEEP VR off [µA]		0.02	0.4
SLEEP VR on [mA]		0.02	0.16
IDLE [mA]		0.426	1.5
RECEIVE [mA]		18.8	16.6
TRANSMIT [mA]	-25	8.5	10.1
	-20	9.0	10.1
	-15	9.9	10.8
	-10	11.2	12.2
	-5	13.9	15.6
	0	17.4	21.2

Warsaw University of Technology

Energy-aware WSN: techniques

1. Topology control (TC)

Sensors deployment and transmission

management guarantee:

- network integrity
- high transmission quality
- low energy costs

ISO/OSI network layer

ISO/OSI data link layer

Warsaw University of Technology

2. Media access control

Energy-aware MAC protocols

3. Routing

Energy-efficient routing protocols

Power control algorithms

Short transmissions

- involve smaller power consumption
- cause less interference and latency

$|AC|^{2} = |AB|^{2} + |BC|^{2} - 2|AB||BC|\cos(ABC)$

Warsaw University of Technology

Location-based topology control

- **R&M**: Minimum Energy mobile wireless networks [V. Rodoplu, T. Memg]
- **LMST**: Design and analysis of an mst-based topology control algorithm [N. Li, J. Hou, L. Sha]
- Comparative study of wireless sensor networks energyefficient topologies and power save protocols [E. Niewiadomska-Szynkiewicz, P. Kwaśniewski, I. Windyga]
- Energy Aware Communication Protocols for Wireless Sensor Networks [E. Niewiadomska-Szynkiewicz]

Neighbor-based topology control

- **Kneigh**: The k-neighbors protocol for symmetric topology control in ad hoc networks [D. Blough, M. Leoncini, G. Resta, P. Santi]
- **XCT**: A practical topology control algorithm for ad hoc networks [R. Wattenhofer, A. Zollinger]

Direction-based topology control

- **CBTB**: Distributed topology control for power efficient operation in multihop wireless ad hoc networks [R. Wattenhofer, L. Li, P. Bahl, Y. Wang]

Power control algorithms

Warsaw University of Technology

50

0,1000000

0,05000000

0,0000000

250

300

200

150

Number of nodes in the network

100

Energy-efficient wireless sensor networks: models, algorithms, applications

ID 0 - (0,0

• LMST [Li, Wang, Song]

Activity control algorithms

Due to nodes redundancy and multiple paths selected nodes can be turned off while still guaranteeing full connectivity and maximum link utilization

Warsaw University of Technology

Clustering-based activity control

- LEACH: Energy-efficient communication protocol for _ wireless sensor networks [W. Heinzelman, A. Chandrakasan, H. Balakrishnan]
- **LEACH-AODV**: Secure low energy aodv protocol for wireless sensor networks [E. Niewiadomska-Szynkiewicz, F. Nabrdalik]
- **HEED**: Distributed clustering in ad-hoc sensor networks: A hybrid, energy-efficient approach [O. Younis, S. Fahmy]
- **EECS**: An energy efficient clustering scheme in wireless sensor networks [Ye, M., Li, C., Chen, G., Wu, J. Eecs]
- **GAF**: Geography-informed energy conservation for ad hoc routing [Y. Xu, J. Heidemann, D. Estrin]

Other techniques

- **ASCENT**: Ascent: Adaptive self-configuring sensor networks topologies [A. Cerpa, D. Estrin]
- **Span**: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks [B. Chen, K. Jamieson, Hm Balakrishnan, R. Morris]

Activity control algorithms

Testbed: MTM-CM5000 motes, TinyOS, IEEE 802.15.4

Method	Cluster 1		Cluster 2			Cluste		
	v1	v2	v3	v1	v2	v3	v1	v2
AODV (without AC)	30	31	32	32	33	33	35	36
LEACH-AODV	41	43	48	46	50	52	48	53
GAF-AODV	66	79	82	82	83	84	83	84

WSN nodes lifetimes in minutes

Warsaw University of Technology

AODV: Ad-hoc On-demand Distance Vector

LEACH: Low-energy Adaptive Clustering Hierarchy

GAF: Geographic Adaptive Fidelity

Energy-aware: Mixed-Integer-Programming

Total energy consumption

Maximal power consumed by a node

$$\min_{\substack{b_i^t, e_i^{kt} z}} \{J_{\max n} = z\}$$

$$\sum_{t=1}^T \sum_{k=1}^K \phi_i^{kt} e_i^{kt} \le z, \qquad i = 1, \dots, N$$

Computing and networking architecture

1. Hybrid edge sensor networks (WSNs/MWSNs)

data collection, aggregation, consolidation, categorization, simple analysis, etc.

2. Base stations (BSs)

data fusion, correlation, aggregation, etc.

3. Backbone network

transmitting data from all base stations to the cloud computing servers and/or data center

4. Computational cloud

collecting data from all sensing clusters fusion,

correlation, large-scale computing, decision-making.

Phenomena cloud detecting and tracking

Warsaw University of Technology

Energy-efficient wireless sensor networks: models, algorithms, applications

Object covering significant area characterized by nondeterministic, dynamic variations of shape, size, speed, and direction of motion along multiple axes

- Intelligent Mobile Wireless Network for Toxic Gas Clouds Monitoring and Tracking [M. Krzysztoń, E. Niewiadomska-Szynkiewicz], Sensors

- Modeling Mobility in Cooperative Ad Hoc Networks [A. Sikora, E. Niewiadomska-Szynkiewicz, J. Kołodziej], Mobile Networks and Applications

Sensing network clusterization

Network divided into *K* sepearate clusters

$$V_1 \cup V_2 \cup \dots \cup V_K = V$$
$$V_1 \cap V_2 \cap \dots \cap V_K = \emptyset$$
$$D_{H_k} \in V_k: \ k\text{-th cluster head}$$

 $D_H \in D_{H_1}, D_{H_2}, \dots, D_{H_K}$: head of the whole network

Permanent connectivity maintained

- all members of each cluster with its cluster head
- all cluster heads with the D_H (network head)

Warsaw University of Technology

Every time step t each device D_i calculates its new position x_i solving the optimization problem

Cloud boundary detection

Each node $D_i \in V_m$ calculates its optimal position solving the optimization problem

$$\min_{x_i} [U_i = \epsilon_c U_i^c + \sum_{D_j \in S_i} \epsilon_j U_i^j + \sum_{k \in IC_m} \epsilon_k U_i^k]$$

$$U_i^c = \left(\frac{\overline{d_c^i}}{d_c^i} - 1\right)^2$$
$$\psi = \frac{\sum_{D_i \in V'} x_i}{|V'|}$$
$$\overline{d_c^i} = \max_{D_i \in V'} d_c^i + w_1, w_1 > 0$$

 D_{5}

Warsaw University of Technology

Cloud boundary detection

Each node $D_i \in V_m$ calculates its optimal position solving the optimization problem

$$\min_{x_i} [U_i = \epsilon_c U_i^c + \sum_{D_j \in S_i} \epsilon_j U_i^j + \sum_{k \in IC_m} \epsilon_k U_i^k]$$

$$\begin{split} S_i &= \{D_j \colon D_j \in SN_i, D_j \in V_m\} \\ U_i^j &= \left(\frac{\overline{d_j^i}}{d_j^i} - 1\right)^2 \\ \overline{d_j^i} &\leq r_t \end{split}$$

Warsaw University of Technology

Cloud boundary detection

Each node $D_i \in V_m$ calculates its optimal position solving the optimization problem

$$\min_{x_i} [U_i = \epsilon_c U_i^c + \sum_{D_j \in S_i} \epsilon_j U_i^j + \sum_{k \in IC_m} \epsilon_k U_i^k]$$

$$\begin{split} IC_m &= \left\{ \begin{matrix} argmin\\ V_j \neq V_m \end{matrix} \ll \left(V_m, V_j\right) \right\} \cup \left\{ \begin{matrix} argmax\\ V_j \neq V_m \end{matrix} \ll \left(V_m, V_j\right) \end{matrix} \right\} \\ & U_i^k = \gamma_k \left(\frac{\overline{d_k^i}}{d_k^i} - 1\right)^2 \\ & \overline{d_k^i} = \frac{\sum_{l \in IC_m} d_l^i}{2} + w_2, w_2 > 0 \end{split}$$

Cloud boundary detection - simulation

\Vc	Irsaw	Univ	rsity
of	Techr	olog	IY -

Boundary detection and tracking

- A temporarily optimal topology for boundary tracking
- Boundary tracking

Network topology quality measure

Operation

move cluster towards the boundary

Measure

distance between a centroid of the *m*-th cluster to the estimated centroid of a cloud:

$$d_c^m = \|c_m - \Psi\|_2$$

The bigger value the better topology

Network topology quality measure

Operation

deploy clusters on the boundary evenly

Measure

standard deviation of angles between neighboring clusters

$$\sigma_{\sphericalangle} = \sqrt{\frac{\sum_{m=1}^{K} (\sphericalangle_m - \mu_{\sphericalangle})^2}{K - 1}}$$
$$\mu_{\sphericalangle} = \frac{\sum_{m=1}^{K} \measuredangle_m}{K}$$
$$= \checkmark (V - V_{\circ}) \text{ i = argmin} \checkmark (V_{\circ})$$

 $\blacktriangleleft_m = \measuredangle(V_m, V_j), j = \operatorname{argmin} \measuredangle(V_m, V_k)$ $k \neq m$

The smaller value the better topology

Network topology quality measure

Operation

expand an area monitored by the cluster Measure

m-th cluster diameter

$$\varphi_m = \max_{D_i, D_j \in V_m} d_j^i$$

The bigger value the better topology

Experimental verification

Warsaw University of Technology

Energy-efficient wireless sensor networks: models, algorithms, applications

Test scenario

Uncontrolled instantaneous release of vapor LNG (Liquefied Natural Gas)

Simulation platform

Heavy gas cloud dispersion simulator: SLAB

Sensor network

- 16 mobile devices (4 clusters)

-
$$v_{max} = 10 \frac{m}{s}$$

 $r_2 \in \{2,3,4\}$

Vapor LNG cloud-tracking sensor network

Book

Ewa Niewiadomska-Szynkiewicz Michal Marks • Piotr Arabas • Andrzej Sikora

BEZPRZEWODOWE SIECI CZUJNIKÓW W INTERNECIE RZECZY MODELE • ALGORYTMY • PROTOKOŁY

Authors: Ewa Niewiador Michał Marks Piotr Arabas Andrzej Sikora

Publisher: Wydawnic⁻

edition: December 2022

Honorary patronage of the Committee on Automation and Robotics of the Polish Academy of Sciences

Warsaw University of Technology

Energy-efficient wireless sensor networks: models, algorithms, applications

Ewa Niewiadomska-Szynkiewicz

Wydawnictwo Naukowe PWN

CyberMine project

Monitoring center for industrial networks in underground mining plants and detection of cyber threats

The project aims to improve IT/OT security in underground mine workings

Main results

- new cybersecurity tools for industrial networks (detection) attacks against controllers and sensors, links)
- application of AI methods

Warsaw University of Technology

Contractors:

JSW IT Systems (leader) Warsaw University of Technology Central Mining Institute GIG

Duration: January - December 2023

Technology readiness level (TRL): IX

Warsaw University of Technology

Ewa Niewiadomska-Szynkiewicz

Institute of Control and Computation Engineering **Electronics and Information Technology Department**

