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Machine Learning - bird’s eye view

Plethora of learning algorithms processing large amounts of data

Remarkable progress in various areas of applications with
Impressive results ( natural language processing, computer vision...)

Strategically sound critical areas of applications (autonomous vehicles,
healthcare...) with long range impact



Machine Learning - bird’s eye view

Enormous computing overhead

Limited interpretability and explainability
Credibility of ML constructs and their solutions
Arising privacy concerns

Brittleness of ML solutions



Society-Oriented Environment of Machine Learning

Creating a holistic view of Machine Learning by understanding
society-oriented impact of the discipline and building

comprehensive technical solutions

Revisiting already existing concepts and methods

Developments of new directions

Green Al
Explainable Al (XAl)



Society-oriented ML

Granular Computing
Green Al

XAl

Federated Learning | ansfer Learning

Credibility assessment



From ML to society oriented ML

Carbon footprint
interpretability

explainability

brittleness . .
Machine Learning o
Multi-objective

decision models

credibility privacy




Green Machine Learning



Green Al (ML) and
Green Machine Learning

Computing to realize deep learning doubles every few months
from 2012 to 2018- 300,000 increase of required computing
Huge number of parameters (connections) to learn

R. Schwartz, J. Dodge, et al., Green Al, 2019
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Green Al (ML) and
Green Machine Learning
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e Dropout

2013

e AlphaGo Zero

e AlphaZero

e Neural Machine Translation
e Neural Architecture Search

o TI7 Dota 1v1

e Xception
VGG e DeepSpeech2
¢ Seq2Seq e ResNets
e GoogleNet

® Visualizing and Understanding Conv Nets

eDQN

2014 2015 2016 2017 2018 2019
Year



= MIT Technology Review Signin  Subscribe

ARTIFICIAL INTELLIGENCE

An Al that writes convincing prose risks

mass-producing fake news

Fed with billions of words, this algorithm creates convincing
articles and shows how Al could be used to fool people ona
mass scale.
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It takes a lot of energy for
machines to learn - here's why Al
is so power-hungry
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ARTIFICIAL INTELLIGENCE

Training a single Al model canemit as
much carbon as five cars in their lifetimes

Deep learning has a terrible carbon footprint.




Selected numbers

Natural Language Processing

GPT-2, has 1.5 billion weights in its network.
GPT-3, has 175 billion weights.

Carbon footprint

training an Al model generates as much carbon emissions as it takes to build
and drive five cars over their lifetimes training.

training BERT once has the carbon footprint of a passenger flying a round trip
between New York and San Francisco. However, by searching using different
structures — that is, by training the algorithm multiple times on the data with
slightly different numbers of neurons, connections and other parameters —
the cost became the equivalent of 315 passengers, or an entire 747 jet.



GPT 4

Generative Pretrained Transformer
Chat GPT 2: 1.5 billion

Chat GPT 3: 175 billion parameters, 936 MWh
Household per year: 10,632 kWh

953.7 Ibs CO, per 1 MWh for delivered electricity

Chat GPT 4: 175 billion parameters, 1 trillion?
Language model: Text generation,

language translation,

language generation,

Automated content generation...



ML constructs:
Energy consumption and carbon footprint

Carbon
Date of Energy footprint
original consumption (Ibs of
paper (kWh) CO2e)
Transformer Jun
(65M ; 27 26
2017
parameters)
Transformer Jun
(213Mm : 201 192
2017
parameters)
Feb,
ELMo 2018 275 262
BERT Oct
(110M 201'8 1,507 1,438
parameters)
Transformer
(213M
parameters)  Jan, 656,347 626,155
w/ neural 2019 MIT T !
. echnology Review
architecture °

search



MIT Technology Review

Common carbon footprint benchmarks
in Ibs of CO2 equivalent

Roundtrip flight b/w NY and SF

(1 passenger) | 1,984

Human life (avg. 1 year) I 11,023
American life (avg. 1 year) . 36,156

US car including fuel (avg. 1
car including fuel (avg 126,000

lifetime)
Transformer (213M

parameters) w/ neural 626,155

architecture search



Green Al (ML) and
Green Machine Learning

Dominant direction:

Buying “stronger” results (accuracy) by engaging
massive computing power; limited return on investment?



Green Al (ML) and
Green Machine Learning

Striving for efficiency of ML constructs:
computing overhead versus improved accuracy
balance of efficiency

Carbon emission

Electricity usage

Elapsed real time

Floating point operations



Towards Green ML

ML Model Granular ML Model

Transfer Learning Design with

Knowledge Distillation granular regularization

Federated Learning Performance evaluation
with granular models



Information granules and
Granular Computing

Information granules: pieces of knowledge resulting as an
abstraction of data, exhibiting well-defined semantics and
forming functional modules in further interpretable system
modeling (granular models).

Formal frameworks of sets (intervals), fuzzy sets, rough sets,...
z-numbers (Zadeh, 2011)

Granular Computing: knowledge-based environment supporting
the.design and processing of information granules



Granular Computing for
Machine Learning models

Designing of ML models at a suitable level of abstraction
Coping with uncertain (granular) experimental data

Delivering Interpretability and explainability mechanisms
(e.g, rules)

Qu.antifying credibility of the model and its results



Explainable ML



Interpretability (1)

Interpretability: a notion

Results that are easily comprehended by the user
producing semantically sound and actionable
findings.



Interpretability (2)

Numbers versus information granules

temperature is 25C
— no context — space not specified

temperature is high



Explainability

Explainability

modeling faculties to:

produce knowledge about relationship existing in
data/models and help explain and audit
prediction/classification results in response to issues of
regulatory or fairness nature

support “what-if’ analysis.
support traceability of the reasoning (inference) process.

why did the model produce a particular prediction?

Why weren’t other decisions made?



Interpretability and explainability

Required levels of abstraction (details)
pivotal role of information granularity

Flexibility
Actionability

Orientation on user/recipient of ML models



Explainable Al (XAl)

DLGFY)  What Are We Trying To Do?

s DL W

Today

+ Why did you do that?
=REv .8
l'!===é.= : ; + Why not something else?
tmll NE ¥ Learning e ': This is a cat * When do you succeed?
L L Lo P . (p=.93) + When do you fail?
WA rocess - -
HEeImgn * When can | trust you?
it D] « How do | correct an error?

Training Leamed Output User with
Data Function a Task

Tomorrow
— « | understand why
N -, T This is a cat: « | understand why not
ew .i / e l *ithas fur, whiskers, * | know when you'll succeed

Learning ¥ i S0d Gt « 1 know when you'll fail

Process =iy & ‘ P «It has this feature: : ¥

« | know when to trust you
/4'” ”“ ma * | know why you erred
Training Explainable  Explanation User with
Data Model Interface a Task

Explainable models: understand, trust, manage produced results

From: D. Gunning, DARPA, 2017



Learning, accuracy, and
interpretability capabilities

Learning !
performance °

explainability



Credibility of ML
models



Credibility of Machine Learning
Models

" y=M(x,a)?

= y=M(x,a)?



Credibility of Machine Learning
Models

New x, result M(x; a,)

How credible is the result ?

How much confidence could be associated with
the result?

Could any action /decision be taken on a basis
of obtained result; self~-awareness mechanism



Credibility of the model:
Granular augmentation of results

Raising and quantifying awareness about quality of results

Interval information granule
(prediction interval)

Fuzzy set
— information granules

Probability information granule
(probability function)




From numeric results to
information granules

Confidence interval (probabilistic information granule)

Probability of coverage a=0.05,. 0.01

PxeA)=1—-«a



From numeric to granular models

Linear regression

confidence and prediction intervals




From models to granular
models: design asset of
information granularity (<)

1

y=M(x;a) = M(x; A)




Coverage and specificity

TR

coverage specificity

specificity ®

coverage



Granular Embedding

G
M- G(M)

Granular elevation of parameters

y=M(x:a) = Y=M(x;G(a))= M(x; A}



Granular elevation of
parameters- level of information
granularity (<)

y=M(x;a) > Y=M(x;G(a))= M(x; A)
Transformation #1:

a i[min(ai(1+8),ai(1-8)), max(a(1+¢),a,(1-¢))], € € [0,1]

Transformation #2:

a i[min(ai(1+s),ai/(1+8)), max(a;(1+¢),a;/(1-€))], € =0



Performance of
granular model

1 .
cov=— YN_, incl(target,, V)

l1if b €B
0, otherwise

incl(b, B)={
1
sp= N1 g(length(Y;))

g-decreasing function of length of Y,

€= arg max_(cov*sp)



Optimization protocol:
level of information granularity

The same level of information granularity € across all parameters
€= arg max.(cov”sp)

Individual levels of information granularity associated with
parameters g, €, ..., &, p-number of parameters

(€1,€3,..-Ep)= @rg max.(cov*sp)



Data privacy

Federated Learning

Credibility of ML models

Granular and results
Computing



Federated Learning

Building a holistic model in the presence of distributed and
non-shared data (data islands):

*requirements of privacy and security
*unreliable and limited communication links

*legal requirements (General Protection Regulations;
China Security Law of PRC, etc.)



Federated Learning:

Paradigm shift

Model M (w)

server

Clients
(1, 2,...,p)



Federated learning:
applications

Education
Deep knowledge tracking system

Healthcare

Privacy-preserving platform
Decentralized optimization framework
Prediction mortality, delivery prediction

Internet of Things (loT)
Data sharing architecture
intelligent resource management

Smart Transportation
Protecting privacy in traffic flow prediction
Traffic collision avoidance
Optimization of vehicular communications



Federated Learning:
Paradigm shift

Model M (W server

bg 5
Ny 2\ \*
® S
* ‘%

Clients
(1, 2,...,p)




Averaged Federated Learning

updates server
>
N 2
client
1
w==30 W
p

server



Federated Learning:
Gradient-descent learning

updates server

QD > e
/&Q’Q 2\ \*
@ %
© >

client

w(iter+1)=w(iter)-a Z gradient Q

client,
\ ' | \—'—’

client

server



Evaluation of
federated learning-based
models

Model M confronted with local data D; of client iit" results in its
granular counterpart G(M)|p;

GM)p1  GM)lp2 ... G(M)|p,
G(M)|p;; characterized by level of information granularity ;

€:;= arg max(cov*sp)



Granular federated learning-based
model- optimization (1)

M G(M)

e=agg(eq, €2, ..., €p)
A A A

I

€1, €2, -+, &p

Aggregation of levels of information granularity

e*=agg(eq, &, ... &p, fy, f2...1p)

f1, f2, fp o WelghtS

aaqg €E4aa —familv of aagareaation operations



Granular federated learning-based
model- optimization (2)

M G(M)
*
e"=agg(e1, €2, ...,&p, 1, f2...p)
| \ o

N - o~

8* \Q_J/ * % * \(‘_o,
a € =~ & 2
P w *
X ~— x
) 3 )
> O >
Q 0
&) IR O
L " Il
* ~ g
~ > =
= >



Granular federated learning-based
model- optimization (3)

M G(M)

e"=agg(e1, €2, ...,&p, 1, f2...fp)
€ l 8\ 8*\

* —_—
(8 opt» aggopt,fhopta f2,opt--- 1:p,opt)_

=argMax oo Vi(es ) Valex)t. +V(ex), agg, fi, fo..f)



Aggregation operators:
generalized averages

Pl y
(lgg(a], Ay «vvs a")z ;Zl]:l (ai)p

.O’ n

p =1 arithmetic mean agg(a,, a,, ..., a,)= % L (a;)

p —0 geometric mean agg(a,, a,, ..., a,)=(a,a,...a,)"”

=-1 harmonic mean agg(a,, a a,)= =
p g8\a, dy, ..., dy, Z{l:l(l/al)



Carbon footprint

Transfer Learning

Credibility of ML models

Granular and results
Computing



Transfer learning: an idea

Transfer learning: extraction of previously acquired knowledge and
applied to a new similar application

Advantages/motivation:

Small, high quality data

Enhancing robustness of the ML model
Elimination of cold start problem

Terminology

Knowledge reuse, learning by analogy, domain adaptation,
Pretraining...



An idea

Source domain Target domain

Target
data

Source —
data

Transfer ‘

odel

learning
SN

4 4

Task
M e
O}

domain: Ds={Fg, P

domain: Dt= {Ft, P()}
task: Ts={Y,, fs(.)} task: T={Y4, fi(.)}
o
Ds #Dy T, #Ty



Transfer Learning with
information granules:
passive approach

Design model on D, mmmp Construct granular model
on D

Information granularity associated with model
to characterize closeness between source and target domains



Transfer Learning with
information granules:
active approach

v
Design model M Granular model

onD
° M|oe> G(M)

\ 4

Design model MO
on Dy



Transfer learning
with information granules

Cpd G

Design model M Granular model

on Ds Mio> G(M)

Design model MO
on D

Loss function

Q=Zpt| target, — M°(xy, W)|| +adp,[l—- cov(M° (x;,w), G(M(x;))] * sp(G (M (xy))

\ )
f

granular regularization

Min w Q w=w-3V,,, 0




Multisource transfer learning
with information granules

Design model M, sssmmam) Granular model G(M,)

on Dg; M1|Dt9G(M1)

I—— Granular modeliGIlE)
Moiot> G(M,)

Design model M,
on Dg,

Design model M?on Dy



Multisources transfer learning
with information granules

IEE——— Granular model G(Mp)
Mopor>G(M,)

Augmented loss function Desin mocel M,

Design model M?on Dy

Q=Y.p,|Itargeti, — M°(xi, W)I| + a1 Ep,[1 — cov(M° (xic, W), 6 (M1 (x,))] * sp(G (M1 (x1)) +

+ay 2[1 — cov(MO(x, W), G (Mo (xi0))] * sp(G(Ma(x)) +
D¢

+ap Z[l — cov(MO(xi, w), G(Mp(xk))] * sp(G (Mp(xk))
D¢

\ )
f

- . granular regularization
MinwQ w=w-pv,,Q




Conclusions

New horizons of ML
The role of information granules and Granular

Computing

Granular embedding and their role in quantification of
results

Future developments: active learning strategies



