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Machine Learning – bird’s eye view

Plethora of learning algorithms processing large amounts of data

Remarkable progress in various areas of applications with 
Impressive results ( natural language processing, computer vision...)

Strategically sound critical areas of applications (autonomous vehicles, 
healthcare...) with long range impact
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Society-Oriented Environment of Machine Learning

Revisiting already existing concepts  and methods

Developments of new directions 

Green AI
Explainable AI (XAI)

Creating a holistic view of Machine Learning by understanding 

society-oriented impact of the discipline and  building 

comprehensive technical  solutions  



Society-oriented ML

Enormous computing overhead
Limited interpretability and explainability
Credibility of ML constructs and their solutions
Arising privacy concerns
Brittleness of ML solutions

Green AI
Granular Computing

Federated Learning

XAI

Transfer Learning

Credibility assessment



From ML to society oriented ML

Machine Learning

Society-oriented 
Machine Learning

interpretability

explainability

privacy
credibility

brittleness

Carbon footprint

Multi-objective
decision models



Green Machine Learning



Green AI (ML) and 
Green Machine Learning

Computing to realize deep learning doubles every few months

from 2012 to 2018- 300,000 increase of required computing

Huge number of parameters (connections) to learn

R. Schwartz, J. Dodge, et al., Green AI, 2019



Green AI (ML) and 
Green Machine Learning









Carbon footprint
training an Al model generates as much carbon emissions as it takes to build 
and drive five cars over their lifetimes training. 

training BERT once has the carbon footprint of a passenger flying a round trip 
between New York and San Francisco. However, by searching using different 
structures – that is, by training the algorithm multiple times on the data with 
slightly different numbers of neurons, connections and other parameters –
the cost became the equivalent of 315 passengers, or an entire 747 jet.

Natural Language Processing 
GPT-2, has 1.5 billion weights in its network.
GPT-3, has 175 billion weights.

Selected numbers



GPT 4
Generative Pretrained Transformer

Chat GPT 2: 1.5 billion

Chat GPT 3: 175 billion parameters, 936 MWh
Household per year: 10,632 kWh
953.7 lbs CO2 per 1 MWh for delivered electricity

Chat GPT 4: 175 billion parameters, 1  trillion?
Language model: Text generation, 
language translation, 
language generation,
Automated content generation...



ML constructs:
Energy consumption and carbon footprint

MIT Technology Review





Green AI (ML) and 
Green Machine Learning

Dominant direction: 

Buying “stronger” results (accuracy)  by engaging   
massive computing power; limited return on investment?



Green AI (ML) and 
Green Machine Learning

Striving for efficiency of ML constructs: 

computing overhead versus  improved accuracy

balance of efficiency

Carbon emission

Electricity usage

Elapsed real time

Floating point operations 



Towards Green ML

ML Model Granular ML Model 

Transfer Learning 

Knowledge Distillation

Federated Learning

Design with 
granular regularization 

Performance evaluation
with granular models



Information granules and 
Granular Computing

Information granules: pieces of knowledge resulting as an 
abstraction of data, exhibiting well-defined semantics and
forming functional modules in further interpretable system 
modeling (granular models).

Formal frameworks of sets (intervals), fuzzy sets, rough sets,...
z-numbers (Zadeh, 2011)

Granular Computing: knowledge-based environment supporting 
the design and  processing of information granules



Granular Computing for
Machine Learning models

Designing of ML models at a suitable level of abstraction

Coping with uncertain (granular) experimental data

Delivering  Interpretability and  explainability mechanisms
(e.g, rules)

Quantifying credibility of the model and its results



Explainable ML



Interpretability (1)

Interpretability: a notion

Results that are easily comprehended by the user
producing semantically sound and actionable
findings.



Interpretability (2)

Numbers versus information granules

temperature is 25C

temperature is high

no context – space not specified



Explainability

Explainability

modeling faculties to:
produce knowledge about relationship existing in
data/models and help explain and audit
prediction/classification results in response to issues of
regulatory or fairness nature

support “what-if” analysis.

support traceability of the reasoning (inference) process.

why did the model produce a particular prediction?
why weren’t other decisions made?



Interpretability and explainability

Required levels of abstraction (details)
pivotal role of information granularity

Flexibility

Actionability 

Orientation on user/recipient of ML models



Explainable AI (XAI)

From:  D. Gunning, DARPA, 2017

Explainable models: understand, trust, manage produced results



Learning, accuracy, and 
interpretability capabilities

explainability

Learning
performance



Credibility of ML
models



Credibility of Machine Learning 
Models

y=M(x,a)?

y=M(x,a)?

y=M(x,a)?



New x, result M(x; aopt)

How credible is the result ?

How much confidence could be associated with
the result?

Could any action /decision be taken on a basis 
of obtained result; self-awareness mechanism

Credibility of Machine Learning 
Models



Credibility of the model:
Granular augmentation of results

Interval information granule
(prediction interval)

Raising and quantifying awareness about quality of results

Fuzzy set 
information granules

Probability information granule
(probability function)



From numeric results to 
information granules

Confidence interval (probabilistic information granule)

Probability of coverage a=0.05,. 0.01

𝑃 𝑥 ∈ 𝐴 = 1 − 𝛼



From numeric to granular models

Linear regression 

confidence and prediction intervals



From models to granular 
models: design asset of 

information granularity (e)

y=M(x;a) →
!

M(x; A) 

e



Coverage and specificity 

coverage specificity

coverage

specificity



Granular Embedding

Granular elevation of parameters

M→
!

G(M)

y=M(x;a)→
"

Y=M(x;G(a))= M(x; A) 



Granular elevation of
parameters- level of information 

granularity (e)

Transformation #1:

Transformation #2:

y=M(x;a)→
"

Y=M(x;G(a))= M(x; A) 

a →
#

[min(ai(1+e),ai(1-e)), max(ai(1+e),ai(1-e))], e ∈ [0,1] 

a →
#

[min(ai(1+e),ai/(1+e)), max(ai(1+e),ai/(1-e))], e ≥0



Performance of
granular model

cov=!
"
∑#$!" 𝑖𝑛𝑐𝑙(𝑡𝑎𝑟𝑔𝑒𝑡𝑘, 𝑌#)

sp=$
%
∑&'$% 𝑔(𝑙𝑒𝑛𝑔𝑡ℎ(𝑌&))

e= arg maxe(cov*sp)

g-decreasing function of length of Yk

incl(b, B)= % 1 𝑖𝑓 𝑏 ∈ 𝐵
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Optimization protocol:
level of information granularity

The same level of information granularity e across all parameters

Individual levels of information granularity associated with
parameters e1, e2, ..., ep, p-number of parameters

e= arg maxe(cov*sp)

(e1,e2,...ep)= arg maxe(cov*sp)



Federated Learning

Data privacy 

Credibility of ML models
and resultsGranular

Computing



Federated Learning 

Building a holistic model in the presence of distributed and
non-shared data (data islands):

*requirements of privacy and security 

*unreliable and limited communication links 

*legal requirements (General Protection Regulations;
China Security Law of PRC, etc.)



Federated Learning:
Paradigm shift

w

kn
ow

led
ge w

know
ledge

Model M (w) server

Clients
(1, 2,...,p)



Federated learning:
applications

Education
Deep knowledge tracking system

Healthcare
Privacy-preserving platform
Decentralized optimization framework
Prediction mortality, delivery prediction

Internet of Things (IoT)
Data sharing architecture
intelligent resource management

Smart Transportation
Protecting privacy in traffic flow prediction
Traffic collision avoidance
Optimization of vehicular communications



Federated Learning:
Paradigm shift
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Averaged Federated Learning
w

w 1

w

w
p

updates server

client

server
client

w="
#
∑$%"
# 𝑤$



Federated Learning:
Gradient-descent learning

w

gr
ad

ien
t wgradient

updates server

client

w(iter+1)=w(iter)-α # gradient
clienti

Qi 

 

server
client



Evaluation of 
federated learning-based 

models
Model M confronted with local data Dii of client iith results in its
granular counterpart G(M)|Dii

G(M)|D1        G(M)|D2           ....   G(M)|Dp

G(M)|Dii characterized by level of information granularity eii

eii= arg max(cov*sp)



Granular federated learning-based
model- optimization (1)

Aggregation of levels of information granularity

e*=agg(e1, e2, ...,ep, f1, f2...fp)

f1, f2, ...fp – weights

agg ∈Agg –family of aggregation operations

e1, e2, ..., ep

M G(M)

e= agg(e1, e2, ..., ep)



Granular federated learning-based
model- optimization (2)

e*

M G(M)

e* e*

e*=agg(e1, e2, ...,ep, f1, f2...fp)

V 2
(e

*)
= 

co
v(
e*

)*
sp

(e
*)

 

V 1
(e

*)
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v(
e*
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(e
*)

 

V p
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*)

 



Granular federated learning-based
model- optimization (3)

e*

M G(M)

e* e*

e*=agg(e1, e2, ...,ep, f1, f2...fp)

(e*opt, aggopt,f1,opt, f2,opt... fp,opt)=

= arg Max                   [V1(e*)+V2(e*)+...+Vp(e*), agg, f1, f2...fp)]agg∈Agg, f1, f2...fp



Aggregation operators: 
generalized averages



Transfer Learning

Carbon footprint

Credibility of ML models
and resultsGranular

Computing



Transfer learning: an idea

Transfer learning: extraction of previously acquired knowledge and
applied to a new similar application

Advantages/motivation:
Small, high quality data
Enhancing robustness of the ML model
Elimination of cold start problem

Terminology
Knowledge reuse, learning by analogy, domain adaptation, 
Pretraining...



An idea 

domain:  Ds= {Fs, P()}

task:  Ts={Ys, fs(.)}
domain:  Dt= {Ft, P()}
task: Tt={Yt, ft(.)}

Ds ≠Dt Ts ≠Tt



Transfer Learning with 
information granules:

passive approach 

Ds Dt

Design model on Ds Construct granular model 
on Dt

Information granularity associated with model
to characterize closeness between source and target domains



Transfer Learning with 
information granules:

active approach 

Design model M
on DS

Granular model

M|Dtà G(M)

Design model M0

on Dt

DS Dt



Transfer learning
with information granules

Design model M
on DS

Granular model

M|Dtà G(M)

Design model M0

on Dt

DS Dt

Loss function

Q=∑𝑫! 𝑡𝑎𝑟𝑔𝑒𝑡" −𝑀# 𝒙" , 𝒘 + 𝛼∑𝑫![1 − 𝑐𝑜𝑣(𝑀
#(𝒙" , 𝒘), 𝐺(𝑀 𝒙" )] ∗ 𝑠𝑝(𝐺(𝑀 𝒙" )

Min w Q w=w-b∇𝒘𝑄
granular regularization



Multisource transfer learning
with information granules

Design model M1
on Ds1

Granular model G(M1)
M1|DtàG(M1)

Design model Mp
on Dsp

Granular model G(Mp)
Mp|DtàG(Mp)

Design model M0 on Dt



Multisources transfer learning
with information granules

Augmented loss function

Min w Q w=w-b∇𝒘𝑄
granular regularization

Q=∑𝑫! 𝑡𝑎𝑟𝑔𝑒𝑡" −𝑀# 𝒙" , 𝒘 + 𝛼$ ∑𝑫![1 − 𝑐𝑜𝑣(𝑀
#(𝒙" , 𝒘), 𝐺(𝑀$ 𝒙" )] ∗ 𝑠𝑝(𝐺 𝑀$ 𝒙" +

+"!#[1 − '()(+"(,#
$!

, .), 0(+!(,#))] ∗ 34(05+!(,#)6 + 

 +"!#[1 − '()(+"(,#
$!

, .), 0(+!(,#))] ∗ 34(0 5+!(,#)6 

 

Design model M1
on Ds1

Granular model G(M1)
M1|DtàG(M1)

Design model Mp
on Dsp

Granular model G(Mp)
Mp|DtàG(Mp)

Design model M0 on Dt



Conclusions

New horizons of ML

The role of information granules and Granular 
Computing

Granular embedding and their role in quantification of
results

Future developments: active learning strategies


